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1. Introduction

The soft breaking terms in the MSSM depend on the supersymmetry breaking mechanism

and on the mediation of that breaking to the fields in the MSSM. One of the most popular

mediation schemes is a special case of gravity mediation which is generally referred to as

“anomaly mediation” [1, 2]. The anomaly mediation contribution to gaugino masses in

theories with dynamical supersymmetry breaking is often the largest contribution. If the

leading Kähler potential has a particular, sequestered, form [2], then the anomaly mediation

contribution to scalar masses is the largest one and it leads to universal (if problematic)

masses.

But there is much that is puzzling about these contributions:

i) The anomaly at issue is an anomaly in conformal transformations, which are not

symmetries of the theory. What does it mean to have an anomaly in a symmetry

which is not present classically? We will argue that the underlying phenomenon can

be understood without relying on the conformal anomaly; in fact, we will show that

the relevant phenomenon is not that of an anomaly.

ii) All discussions of the problem are set within supergravity models, and most are tied

to a very particular formulation of supergravity theories which uses conformal com-

pensators, hence the relation to the conformal anomaly. We will work in components

without using any particular set of auxiliary fields. We will see that the phenomenon

already arises in globally supersymmetric theories. It has no fundamental connection

to local supersymmetry, much less any particular supergravity formalism.
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iii) It is unclear, in the usual presentations, whether the effect should be understood in

a Wilsonian effective action with a cutoff at a given energy Λ, or in a 1PI effective

action. Related to this is the question whether the phenomenon is an ultraviolet

(UV) or an infrared (IR) effect. We will show that the issue is a local counterterm

which is needed in order to preserve supersymmetry. It is associated with physics

near the cutoff Λ of the Wilsonian action, and should be thought of as an ultraviolet

effect.

This note seeks to clarify the nature of these phenomena. We will explain our assertion

that the effect is not an anomaly, nor is it intrinsically gravitational. We will demonstrate

that it arises in theories where supersymmetry is unbroken, as well as in theories of super-

symmetry breaking. The distinctive feature is the appearance of a contact term coupling

the superpotential to gaugino bilinears. This term is not supersymmetric invariant. But

this lack of invariance is cancelled by a the lack of invariance of the measure of the light

fields. As we explain, this sort of phenomenon is already familiar in ordinary QED in two

and four dimensions. We will, as a result, adopt a different terminology, referring to these

phenomena as the gaugino counterterm.

Some experts might feel that our explanations are not new and we merely review known

facts. However, a careful examination of the published literature and numerous detailed

discussions with many physicists convinced us that the subject is confusing and deserves a

new, clear exposition.

There are two important issues which we will not address. The first, is the question

of whether the sequestered form of the Kähler potential is natural or not. The second,

is whether the sequestered form leads to an acceptable phenomenology. Instead, we will

focus only on the more formal field theoretic issues associated with the counterterms.

The rest of this paper is organized as follows. In the next section, we discuss at some

length the gaugino counterterm, the crucial element of anomaly mediation. We explain that

this counterterm arises from integrating out modes near the UV cutoff of the Wilsonian

effective action. It can be thought of either as a contribution of the regulator fields at that

scale or as a local term which is explicitly present in that action. In the latter case it seems

to violate supersymmetry, but this symmetry is restored through the interactions of the

light fields. We remind the reader that this phenomenon is familiar in QED both in two

and four dimensions. In section three we give two derivations of the counterterms. One is a

review of a standard derivation based on Pauli-Villars fields. The second considers theories

in which the gauge symmetry is spontaneously broken, and the low energy effective action

is completely local. In this setup, requirement of the local counterterm is almost obvious.

In section four, we show that the gaugino counterterm already arises in globally super-

symmetric theories. In section 5, we introduce simple models of supersymmetry breaking

which incorporate features of models with dynamical supersymmetry breaking. Section

six is a discussion of the scalar counterterms from this point of view. In an appendix, we

discuss two and four dimensional electrodynamics in a manner which stresses the parallels

to the gaugino counterterm.
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2. The gaugino counter term

The gaugino counterterm, the phenomenon which underlies anomaly mediation, can be

understood in a variety of ways. Historically, there have been several derivations. In [3], it

was observed that, at least naively, in a theory with broken supersymmetry, the presence

of heavy fields leads to one loop diagrams contributing to gaugino masses, even when the

gauge coupling function is trivial, and no such term is permitted by local supersymmetry

in the effective action. Regulating the diagrams with a Pauli-Villars field eliminates these

terms, but this raises the question: why there are no such contributions from massless

fields? In [1, 2] it was shown that such contributions are in fact present. These derivations

of gaugino masses were tied to a particular supergravity formalism, and to anomalous field

redefinitions in that formalism. The authors of [2] exhibited additional contributions at two

loops to scalar masses as well, beyond those expected from the local supergravity action.

Reference [4] offered an explanation of this phenomenon in terms of anomalies in various

field redefinitions in supergravity. They summarized their analysis in terms of non-local

operators in the 1PI effective action.

These derivations are all correct, but in each case their physical significance is obscure.

Our goal is to find a more satisfying conceptual setting. For this purpose, it is enough

to consider supersymmetric QED; i.e. a U(1) gauge theory with two chiral superfields φ±
with opposite U(1) charges. We will include a nonzero constant W0 in the superpotential.

Because of its simplicity, we first review in this section the Pauli-Villars analysis, showing

that a contact term proportional to W ∗λλ is generated. Such a term arises whether or

not supersymmetry is broken. This gaugino contact term cannot arise, however, as a term

in a supersymmetric effective action. This is the would-be paradox. We explain in this

section, and in the appendix, that this term is of a type quite familiar in ordinary field

theory, even in QED. It does not signal the presence of an anomaly. In the next section,

we briefly review the derivation using the superconformal compensator, and then provide

a more transparent derivation, in a theory free of non-trivial infrared physics.

Turning to the U(1) model, if supersymmetry is unbroken the cosmological constant is

negative and the ground state is AdS; if supersymmetry is broken (due to some additional,

hidden sector fields, say) we can use W0 to set the cosmological constant to zero. The

superpotential is

W = W0 + mφ+φ− (2.1)

and we will take, for simplicity, the constants

W0 = m3/2M
2
p and m (2.2)

to be real and m À m3/2, such that the AdS radius RAdS = 1
m3/2

is large compared to the

inverse mass, and the space is approximately flat. The Kähler potential is simply

K = φ+φ+ + φ−φ−. (2.3)

– 3 –
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The supergravity potential is

V = eK/M2
p

[

gij

(

∂iW +
1

M2
p

∂iK W

)(

∂iW +
1

M2
p

∂iK W

)

− 3
1

M2
p

WW

]

(2.4)

= −3m2
3/2M

2
p + (m2 − 2m2

3/2)(|φ+|2 + |φ−|2) − m3/2m(φ+φ− + φ+φ−) + . . .

where we neglected terms which include higher powers of the fields. The first term is the

cosmological constant and the other terms lead to scalar masses and interactions. Note

in particular that the interaction with nonzero W0 leads both to contributions to scalar

masses of the form |φ±|2 and to B-terms of the form φ+φ− + c.c.. The mass eigenstates

are φ1,2 = 1√
2
(φ+ ∓ φ−) with eigenvalues

m2
1,2 = m2 − 2m2

3/2 ± mm3/2. (2.5)

A simple calculation shows that the masses of the fermionic partners of φ± are not

modified by the interaction with W0 and are simply m. We see that the masses of the two

bosons and the fermion are not degenerate even though supersymmetry is not broken.1

With these masses, there is a one loop graph for the photino mass mλ. Using the

B-term in (2.5) we find

mλ = e2

∫

d4p

(2π)4
m3/2m

2

(p2 + m2)3
=

e2

16π2
m3/2 (2.7)

and therefore there is an effective interaction

α

4πM2
p

W ∗
0 λλ (2.8)

(λ is the photino). Note that the expression (2.7) is finite, does not need regularization

and seems unambiguous.

This result appears paradoxical, since no such term appears in the general supergravity

action [6, 7]. How can loops generate terms which do not respect the symmetry of the

theory, and therefore cannot be present in an invariant Lagrangian? The answer is that

this term can be cancelled by a local counterterm. This is easily seen if we regulate the

1This agrees with the expression for the corresponding dimensions in the three dimensional boundary

conformal field theory. The dimensions of the fermion operator and the boson operators are [5]:

∆F =
3

2
+

|mF |

m3/2

=
3

2
+

|m|

m3/2

∆B1,2 =
3

2
+

s

9

4
+

m2
1,2

m2
3/2

=
3

2
+

|m|

m3/2

±
1

2

= ∆F ±
1

2
. (2.6)

The dimensions ∆F and ∆B± = ∆F ± 1

2
are such that the corresponding operators are in the same

supersymmetry multiplet.
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theory using a supersymmetric regulator like Pauli-Villars with mass Λ. The contribution

of (2.8) is independent of the mass m, and similarly the contribution of the regulator is

finite and is independent of Λ. Since the Pauli-Villars field contributes with the opposite

sign, its contribution exactly cancels that of the fields φ± (2.8), and we end up without

that term!

Let us consider now the massless theory with m = 0. Here (2.7) vanishes, but the

regulator contribution is nonzero and we are left with a term of the form of (2.8), but with

the opposite sign. This is the famed “anomaly mediated” gaugino mass, in the special case

of a U(1) theory (and with unbroken supersymmetry).

To summarize, in the massive theory a term like (2.8) is not present, but it is present

in the massless theory.

What is the Wilsonian action interpretation of this result? Consider first the massive

theory with a UV cutoff Λ À m. The matter fields are much lighter than the UV cutoff

and their loops are not included in the effective action. If we regularize the theory with

Pauli-Villars fields with mass Λ, these fields lead to a gaugino counterterms. Therefore,

this term is generated by physics near the UV cutoff Λ, but is not explicitly present in

the Wilsonian action. If alternatively, we use a sharp momentum cutoff, then this term

must be introduced “by hand.” The sharp momentum cutoff is not supersymmetric, and

therefore it is not surprising that such a counterterm is needed.2 One way of thinking

about this situation is that the regulated measure of the light fields is not supersymmetric

and supersymmetry is restored only by adding this local counterterm.

Regardless of whether we study the system with a supersymmetric regulator, where

the term arises from the physics around Λ, or with a nonsupersymmetric cutoff, where it

is a local counterterm, we see here cancellations between contributions arising at different

momentum scales.

It should be stressed that this phenomenon is not an anomaly. An anomaly is a lack

of symmetry, which cannot be restored with local counterterms. Here, with some cutoffs

the effective lagrangian is supersymmetric; with some it is not, but the symmetry can be

restored by adding a local counterterm.

As the cutoff is further reduced to be of order m we should take into account the

matter loops which cancel this contribution. Finally, for very low cutoff Λ ¿ m the theory

includes only the photon multiplet and the counterterm is not present. We conclude that

this gaugino counterterm is present only at energies above m, but it is absent at energies

below m.

Since the counterterm is present at energies larger than m, it exists at all energies in

the massless theory m = 0. However, we should point out that even though in this case the

gaugino counterterm is present at very low energies, this does not mean that the photino is

2The case of supersymmetric dimensional reduction was analyzed in [1] and in more detail in [8]. There

it was argued that to respect the local conformal invariance of the supergravity construction with 4 − ε

spatial coordinates, certain operators with coefficients of order ε have to be added to the action. These

operators lead to the counterterm at one loop. One can view these operators as added counterterms required

for supersymmetry. Alternatively, we can leave out these operators and add the gaugino counterterm “by

hand.”
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massive. The reason for that is that in massless QED the gauge coupling is renormalized to

zero in the IR and the physical photino mass is proportional to the fine structure constant

α which vanishes at low energies. This is consistent with the fact that massless SQED

should have degenerate photons and photinos.3

It is easy to generalize this discussion in four different directions:

i) Consider SQED with several charged matter fields, flavors, with different masses.

The coefficient of the counter term is proportional to the number of flavors which are

lighter than the cutoff. More precisely, it is proportional to the beta function at that

energy.

ii) A non-Abelian gauge theory with matter fields also generates a gaugino counterterm

which is proportional to its beta function at the scale of the UV cutoff. Here, unlike

SQED, loops of gauge multiplets also contribute to the counterterm. Therefore, at

one loop order we can identify the coefficient of the counterterm (2.8) as proportional

to the one loop beta function coefficient b0.

iii) The calculation above which leads to a term proportional to the constant W0 is easily

extended to include the full W . Therefore, even if W0 vanishes, the counterterm exists

and leads to nontrivial interactions involving gauginos and scalars.

iv) The previous discussion still holds when supersymmetry is spontaneously broken in

flat space. In this case we also find gaugino masses of order αm3/2 with a coefficient

which depends on the beta function. However, in this case the renormalization group

evolution of this term is different. We can continue to integrate out modes to lower

energies until we reach the gaugino mass and then this term stops running. Therefore,

in that case the gauginos do receive nonzero physical mass. This is the case of interest

for hidden sector anomaly mediation models.

The phenomenon that a local, gauge non-invariant term is generated by high momen-

tum loops, is familiar in quantum field theory. For example, in the massless Schwinger

model, the vacuum polarization is transverse:

Πµν ∼ gµν − qµqν

q2
. (2.9)

Part of the local, gµν term arises from high energy effects near the UV cutoff; the non-

local term (and the remaining contribution proportional to gµν) is associated with massless

states in the loop. This as well as a similar phenomenon in four dimensional four photon

scattering are reviewed in appendix A.

3We conclude that in AdS the photino remains massless both for nonzero and for zero m. This is

consistent with general facts about AdS backgrounds. Massless gauge fields are associated with conserved

currents in the boundary theory whose dimensions are fixed. The dimension of the superpartner of this

current is therefore fixed by supersymmetry and cannot be renormalized. This dimension determines the

mass of the gauginos and hence they must remain massless.
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Bagger et.al. [4] have exhibited a similar structure in supergravity theories which gives

rise to the gaugino counterterm:

Γ = − g2

256π2

∫

d2θ2EW αWα
1

¤

(

D2 − 9R
)

×
[

4(TR − 3TG)R+ − . . .
]

. (2.10)

This includes the local term

Lct ∼
g2

16π2
W ∗λλ. (2.11)

The parallel to equation (2.9) is clear.

3. A transparent derivation of the counterterm

The traditional derivation of the contact term, which we review briefly below, relies on

technical aspects of supergravity theory, especially the use of the superconformal compen-

sator. Our derivation of the previous section may seem tied to a particular regularization

scheme, and further arguments are required to demonstrate that no additional local coun-

terterms are possible. In this section, we present a very simple derivation which relies only

on familiar field theory notions.

We start by reviewing the traditional derivation. The conformal compensator is a non-

propagating field introduced in a supergravity formalism which begins with a conformally

invariant structure, and introduces a spurion (the compensator) to maintain the symmetry.

Following [1, 2], we write the compensator as:

Φ = 1 + FΦθ2 (3.1)

In terms of Φ, the relevant terms in the action are:

∫

d4θh(φ, e−V φ)ΦΦ +

∫

d2θ(Φ3W (φ) + f(φ)W 2
α) + h.c. (3.2)

h is related to the Kähler potential through

h = −3M2
p e−K/3M2

p . (3.3)

For a model with broken supersymmetry and vanishing cosmological constant:

FΦ = m3/2. (3.4)

In our simple U(1) theory, if we regulate with a Pauli-Villars field with mass Λ, the

gauge coupling function at the scale µ is:

−
∫

d2θ
b0

32π2
ln

(

µ2

Λ2Φ−2

)

W 2
α. (3.5)

where the power of Φ in the logarithm compensates for the dimension of Λ. Expanding

the logarithm and doing the θ integration, generates precisely the gaugino contact term.

– 7 –
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But there is a conceptually much simpler derivation, not tied to any particular super-

gravity formalism, or to anomalies in field redefinitions. Consider, again, the U(1) theory,

with massless chiral fields. This theory has a Higgs phase in which:

φ+ = φ− = v (3.6)

(up to a phase). In this phase, the gauge symmetry is broken. The vector multiplet is

massive, and there is one massless chiral multiplet, which can be described by the gauge

invariant composite field φ+φ−. In perturbation theory, there are no couplings of two light

fields to heavy fields, so there is no interesting infrared behavior in Feynman diagrams.

The effective action for the gauge fields is necessarily local, so it has the form:
∫

d2θ

(

1

g2
+

b0

32π2
ln(φ+φ−/Λ2)

)

W 2
α. (3.7)

(Of course, this term can be understood as reflecting the anomaly in the global symmetry

under which φ± are rotated by the same phase, or the conformal anomaly of SQED.) This

corresponds to a gauge coupling function,

f =
b0

32π2
ln(φ+φ−) + const. (3.8)

Substituting this into the general supergravity action [6, 7], this gauge coupling func-

tion leads to a gaugino contact term:

1

M2
p

λλgii ∂f

∂φi
(DiW )∗ =

1

16π2M2
p

λλW ∗
0 + . . . . (3.9)

where DiW denotes the Kähler derivative of the superpotential with respect to the chiral

field φi:

DiW =
∂W

∂φi
+

1

M2
p

∂K

∂φi
W. (3.10)

Unlike the discussion in the previous section, here the gaugino term is part of a super-

symmetric Lagrangian.

This Higgs phase analysis makes it absolutely clear that the term is necessary for

supersymmetry, and allows one to immediately write the complete action.

We see that the gaugino counterterm can be supersymmetrized either using a nonlocal

action as in [4], or using a singular action like (3.8), but it cannot be supersymmetrized

using a local regular action. In the previous section we worked around the origin in field

space φ± ≈ 0, and therefore we could not use expressions like (3.8). Here, in the Higgs

phase, we are far from the origin, and therefore we can use this expression. More physically,

the subtleties in the previous section are associated with massless particles (more precisely,

particles which are much lighter than the UV cutoff). In the Higgs phase, there are no such

particles and therefore these subtleties are absent and the term can be supersymmetrized

by local operators.

The Higgs phase calculation indicates most strikingly that the gaugino contact term

is not related to an anomaly. In a theory without charged massless fields in its Higgs

phase, it is required by supersymmetry. We will see shortly that similar remarks apply to

scalar mass terms. First, we demonstrate that the contact term arises already in globally

supersymmetric theories.

– 8 –
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4. The counterterm in globally supersymmetric theories

With the machinery of the previous section, we can see that the gaugino counterterm

already arises in globally supersymmetric theories. Take the U(1) model as before, but

include also a Kahler potential:

K = φ+φ+ + φ−φ− + zz +
1

µ2
(φ+φ+ + φ−φ−)zz. (4.1)

Here z is a field with a non-zero F component whose dynamics is not important here

(see section 5), and µ is some energy scale assumed far lower than Mp, so gravity is irrelevant

The last term in (4.1) can arise in a more microscopic renormalizable theory from tree level

exchange of massive gauge fields, or from loop effects. Again, consider the theory in its

Higgs phase. The one loop effective action has the structure:

L0 +
b0

16π2

∫

d2θ ln(φ+φ−)W 2
α . (4.2)

Solving for Fφ+
and Fφ− gives

Fφ+
= − 1

µ2
φ+zFz ; Fφ− = − 1

µ2
φ−zFz. (4.3)

So again, substituting in (4.2) yields a gaugino mass contact term:

2b0

16π2µ2
λλzFz. (4.4)

This term has all of the features of the counterterm in supergravity theories. In the

theory with φ± = 0, it cannot be written as part of a locally supersymmetric effective

action. Its appearance is required by supersymmetry, but how it appears depends on

the choice of regulator. For example, with a Pauli-Villars regulator, it may be calculated

directly, but it is not generated with a momentum space cutoff or by dimensional reduction,

and so must be added by hand in these cases.

An alternative derivation of the answer (4.4) which is valid around the origin φ± ≈ 0

can be obtained by performing a field redefinition φ± → φ±(1 + zz
2µ2 ). This rescaling is

not holomorphic but this is not a problem. The anomaly in this rescaling leads to a term

proportional to
∫

d2θ log(1 + zz
µ2 )W 2

α ⊃ zFz
µ2 λλ.

This derivation is easily generalized to an arbitrary Kähler potential which depends on

fields in different representations of the gauge group. Then it leads to a term proportional

to

∂j

(

∑

R

TR

dR
log(detiiKii)

)

F jλλ, (4.5)

where the sum over R is over the different representations, TR and dR are the Casimir and

dimension of R, and the indices i and i label fields in R and R. The term (4.5) has already

been noted in [4]. However, these authors have set Mp = 1, and therefore did not stress

that this term is independent of Mp and hence it is unrelated to gravity!
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5. A setting: supergravity theories with dynamical supersymmetry break-

ing

With a view to thinking about scalar contact terms, in this section we study a simple

model for supersymmetry breaking. Many (but not all) models of tree level or dynamical

supersymmetry breaking are described at low energies by this model or a simple variant of

it. We start by considering a global supersymmetric theory and later we will couple it to

supergravity and use it as a hidden sector for supersymmetry breaking.

We have a single chiral superfield z with a Kähler potential and a superpotential

Khidden = µ2f

(

zz

µ2

)

(5.1)

Whidden = M2z + W0. (5.2)

for some function f(zz/µ2). In models of dynamical supersymmetry breaking the

scale µ is the dynamically generated scale of the theory, and it determines the low energy

Kähler potential. In order for this effective theory to be valid, we need that the scale of

supersymmetry breaking is much smaller than µ and hence we take M ¿ µ. Therefore,

we took the Kähler potential to be independent of M . Note that in global supersymmetry

the constant W0 is not important and hence the theory has a U(1)R symmetry under

which z rotates by a phase. Such a symmetry is common in models of supersymmetry

breaking [9, 10].

The potential derived from (5.2) is

Vhidden =
M4

f ′′(zz/µ2) zz
µ2 + f ′(zz/µ2)

. (5.3)

If the function f is regular, the potential never vanishes and supersymmetry is broken

(the behavior of f at infinity determines whether or not the theory has runaway behavior).

It leads to Fz ∼ M2. If the minimum of the potential is at nonzero z (which is necessarily

at z ∼ µ), then the U(1)R symmetry is spontaneously broken.4 Alternatively, as in the

O’Raifeartaigh model and in the model of [11] the minimum can be at z = 0, and then the

R-symmetry is not broken. In this case it is enough to expand f and study

Khidden = zz − z2z2

µ2
(5.4)

which leads to Fz = M2 and the field z acquires a mass mz ∼ M2/µ ¿ M ¿ µ.

Next we consider the gravitational corrections to these expressions focusing on the

weak gravity limit Mp → ∞. For the above field theoretic analysis to be meaningful we

take M,µ ¿ Mp. Rather than taking Mp → ∞ with fixed M,µ, we consider the limit with

fixed gravitino mass

m3/2 ∼ M2

Mp
, (5.5)

4The (3, 2) model of [9] and its various relatives lead to a similar but somewhat more complicated

situation. There as the analog of M is reduced, the expectation values of the low energy fields become

larger rather than remaining constant as in our model.
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and therefore we take

M,µ ∼
√

Mp → ∞. (5.6)

The supergravity potential

V = eK/M2
p

(

1

Kzz
|∂zW +

1

M2
p

KzW |2 − 3

M2
p

|W |2
)

(5.7)

can be analyzed in the limit Mp → ∞ with (5.6). In order to cancel the orders M2
p and

Mp contributions to the cosmological constant,

Whidden = M2

(

z +
1√
3
Mp −

µ2

6
√

3Mp

+ O(1/Mp)

)

(5.8)

(recall (5.6)). Order M0
p effects in the cosmological constant and in W0 depend on the

higher order corrections to K and on quantum effects in the low energy visible theory. We

will not discuss them here.

Note that the constant term in W explicitly breaks the U(1)R symmetry. Since this

constant is O(M2
p ) one should check that the previous results about the field z are not

modified. Indeed, to the order we work the only difference due to the change in W and the

gravitational corrections is to change the expectation value of z to

〈z〉 = z0 =
µ2

2
√

3Mp

(1 + O(1/Mp)) (5.9)

but leaving the leading order result for the mass of z as in the field theory calculation. Note

that in our limit the expectation value (5.9) is of order M0
p , but since the gravitational

corrections are of order 1

M2
p

our analysis is consistent.

Finally, the gravitino mass is given by

m3/2 =
1

M2
p

e
K

2M2
p W (z0) =

M2

√
3Mp

(1 + O(1/Mp)) (5.10)

in accord with (5.5).

6. Scalar field contact terms

One of the remarkable observations of [2] is that not only are there contact terms for

gauginos which seem incompatible with local supersymmetry, but there are also scalar

terms. Such scalar mass terms are conceptually similar to the gaugino masses we discussed

above. The lesson from our previous analysis is that despite appearance, there is really no

tension between these masses and the local supersymmetry.

The most transparent way to understand it is as in our analysis of the gaugino contact

term in the Higgs phase of the theory. In that case, there is no issue of non-locality and it

is clear that supersymmetry demands the presence of the contact term. The same is true

of the scalar masses, as we will see in this section.
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The gaugino counterterm is most useful in hidden sector supergravity theories without

gauge singlets. In this case the tree level couplings lead to very small gaugino masses and

the gaugino counterterm is the leading contribution. Scalar masses, on the other hand, are

easy to generate in all hidden sector theories using generic dimension four operators in the

Kähler potential which couple the hidden and the visible sectors. In such a situation, the

masses which are generated by the local counterterms are suppressed by powers of the fine

structure constant, and hence they are negligible. Randall and Sundrum [2] considered

a certain “sequestered” form of the Kähler potential, which might arise in some contexts

(particularly in the case of separated branes). This form guarantees that the tree level

terms (and also the one loop counterterms) do not lead to scalar masses. The leading

contribution to the scalar masses arises from a two-loop counterterm. In the rest of this

section we will describe this phenomenon using our Higgs phase langauge.

We divide the fields into two groups, visible sector fields φ (φ+ and φ− in our U(1)

example), and hidden sector fields, z. For simplicity we consider a single hidden sector

field, as in section 5, and a single visible sector field φ. Instead of the interaction with

the U(1) gauge field we can have φ3 interaction in the visible sector superpotential. The

extension to a U(1) theory is straightforward.

The sequestered Kähler potential is

K = −3M2
p ln

(

1 − 1

3M2
p

Kvis(φ, φ) − 1

3M2
p

Khid(z, z)

)

. (6.1)

For the hidden sector we use the model of section 5 and tune W0 to have vanishing

cosmological constant.

More concretely, the visible and the hidden sectors Kähler potentials Kvis and Khid

in (6.1) are such that

K = −3M2
p ln

(

1 − 1

3M2
p

φφZ(φφ) − 1

3M2
p

(zz − 1

µ2
z2z2)

)

(6.2)

and the superpotential is

W = W0 + M2z + Wvis(φ). (6.3)

At tree level Z(φ, φ) = 1. Radiative corrections in the visible sector change Z, but the

important point is that it is independent of gravitational corrections.

At tree level Z = 1 and the scalar fields φ do not get supersymmetry breaking mass

terms [2]. One can then do a calculation of the corrections to the masses, using Pauli-

Villars regulators as for the gaugino masses. The Pauli-Villars fields have a non-zero

supersymmetry-breaking mass (B-term). Since µ ¿ Mp, this is simply:

Λm3/2φ
2 + c.c.. (6.4)

So the mass matrix for these fields is precisely that of a gauge-mediated theory (for

a review, see e.g. [12]), and we can immediately read off the two loop correction to the

masses of the light fields:

m2
s = −2

( α

16π2

)2

(6.5)
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Here we have given the expression when the visible sector is SQED which has two

chiral superfields φ±. In the case of a single φ with a φ3 superpotential interaction α

in (6.5) is replaced by the square of the cubic coupling. As for the gaugino mass, the

result is independent of the Pauli-Villars mass Λ. As there, it cancels the corresponding

contributions from physical heavy fields, and we are left with the Paul-Villars contribution

associated with the light fields. The negative sign comes from the need to subtract the

contribution of the Pauli-Villars fields.

All of this is precisely analogous to the behavior we saw for the gaugino mass. In the

conformal compensator approach, these masses arise, as in that case, from thinking of the

ultraviolet cutoff as dependent on the compensator [2]. Once more, these results can be

understood in terms of the appearance in the Wilsonian effective action of a counterterm

which does not respect the local supersymmetry. The lack of local SUSY invariance is

needed in order to compensate the lack of invariance of the measure of the light fields. The

required supergraph calculation in this case is more challenging (one needs the terms in

the lagrangian quadratic in the auxiliary fields in the gravity multiplet, for example).

A Higgs phase calculation similar to the one we used for the gaugino masses is only

slightly more complicated than in that case. As we now illustrate, the scalar masses follow

from straightforwardly computing the Kähler potential, and then using the supergravity

action to determine the scalar potential.

In the Higgs phase, Z receives φ-dependent radiative corrections. Including the leading

logarithms up to two loops we have

Z = 1 + a1ε ln(φφ) + a2ε
2 ln2(φφ). (6.6)

Here ε = g2

16π2 or the square of the cubic coupling in the superpotential. The coefficients

a1 and a2 can be read off of standard calculations in supersymmetry (see, e.g., [13]). In

the case of SQED we have:

a1 = 1 ; a2 = 1 − 2b0 (6.7)

(that case needs several charged fields like φ±) and other values for the Wess-Zumino model

with the cubic superpotential.

Next, we substitute this expression for Z in the Kähler potential (6.2) and then in the

supergravity scalar potential. Using the expectation value of z from (5.9) and tuning W0

so that the cosmological constant vanishes we determine the potential for φ

V (z0) = eK/M2
p

(

gii|∂iW +
1

M2
p

∂iKW |2 − 3

M2
p

|W |2
)

=
1

∂φ∂φKvis(φ, φ)
|∂φWvis(φ)|2 + m2

3/2ε
2(a2

1 − 2a2)|φ|2

+m3/2 (∆φφ∂φWvis(φ) − 3Wvis(φ) + c.c.) + O(1/Mp, ε
3)

∆φ = 1 − a1ε + O(ε2) (6.8)

(recall, µ,M ∼
√

Mp.)
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The first term in (6.8) is the potential for φ in the globally supersymmetric limit. The

corrections represent supersymmetry breaking terms.

Consider first the scalar masses of the form |φ|2 (the second term in (6.8)). As claimed

in [2], the sequestered form does not lead to tree level masses of order ε0. Also, the one loop

correction of order ε1 and the two loop contributions which could depend on logarithms like

ε2 ln2(φφ) and ε2 ln(φφ) vanish. We are left with a two loop mass term without logarithms.

Such an answer can be extrapolated to φ ≈ 0 where it leads to the scalar mass square

m2
s = (a2

1 − 2a2)ε
2m2

3/2
. This agrees with the expression of Randall and Sundrum for the

scalar masses:

m2
s = 2b0

(

g2

16π2

)2

m2
3/2. (6.9)

The third term in (6.8) leads to B-terms and A-terms. The B-terms arise already

at tree level (as in section 2). But the A-terms which originate from φ3 terms in the

superpotential arise at one loop and are of order ε. We expressed them in terms of the

anomalous dimension ∆φ.5 This way of writing them can be used to make contact with

the formalism based on the conformal compensator.

Once again, in this formulation, the scale dependence of the mass, A-terms and B-terms

is immediate. It is also clear, once more, that these terms are required by supersymmetry.

A. Two familiar analogs of the gaugino counter term

A.1 Contact terms in the Schwinger model

Electrodynamics in 1 + 1 dimension poses many of the same issues which arise with the

gaugino counterterm. A traditional way of describing mass generation in the Schwinger

model is to examine the vacuum polarization diagram. The vacuum polarization itself is

finite, but the diagram is superficially ultraviolet divergent, and this can lead to paradoxes.

For example, it is easy to “prove” that the vacuum polarization tensor vanishes. Writing

the transverse expression

Πµν(q) = (gµνq2 − qµqν)Π(q2) (A.1)

one can take the trace:

Πµ
µ = q2Π(q2). (A.2)

But at the level of Feynman diagrams for massless fields, this would seem to vanish

since γµγνγµ = 0 in two dimensions. However, the diagram is ultraviolet divergent by

power counting, and introduction of a gauge-invariant regulator resolves the puzzle. For

example, for dimensional regularization, γµγνγµ = ε and, combined with the 1/ε from

the ultraviolet divergence, yields a finite contribution. Alternatively, with a Pauli-Villars

regulator, one obtains two contributions. From the diagram with the massless fields, one

obtains:

Π0
µν(q) = (2qµqν − gµνq2)

1

πq2
, (A.3)

5The O(ε2) terms in ∆φ depend on log |φ|2. These terms should be understood after performing wave-

function renormalization.
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while from the regulator diagram one obtains

ΠΛ
µν(q) = −gµνq2 1

πq2
. (A.4)

(In lightcone coordinates Π0
±±(q) = q±

πq∓
, Π0

±∓ = 0, while ΠΛ
±±(q) = 0, ΠΛ

±∓ = − 1
π ). Note

that neither result by itself is gauge invariant, but the combined expression is. Taking

account of the normalization of the kinetic terms, this corresponds to a mass, e2/π, for the

physical excitation.

A few comments are in order. First, as for the gaugino counterterm, there is a local

piece in this expression, arising from high energy modes, and there is a non-local term,

from massless exchanges, which compensates for the lack of gauge invariance of the contact

term. Second, it is important to point out that a failure of gauge invariance (breakdown of

the Ward identity), can be understood, from a path integral perspective, as resulting from a

lack of invariance of the measure. The naive measure, without the regulator field, violates

gauge invariance. The regulated measure does not. This violation of gauge invariance

has nothing to do with whether the fields are massless or massive. In the massive theory

without the regulator, for a fermion of mass m, we would obtain a result identical to that

above for ΠΛ.

Had one used a non-gauge invariant regulator, such as a momentum space cutoff, one

would need to fix up the short distance part by adding a counterterm (i.e. a piece of the

high energy Wilsonian action) to the contribution from the Feynman diagram.

A.2 A four dimensional example: light by light scattering

Consider now four dimensional, vector-like electrodynamics (with massless fermions). Here,

there is no divergence associated with diagrams with four external photons. This is because

of gauge invariance. But it is not true that the high energy behavior of these diagrams can

be ignored.

Analogous to the Schwinger model, one expects that the 1PI action at low energies

contains terms like

L =
(F 2

µν)(F 2
ρσ)

¤2
. (A.5)

In momentum space, this includes couplings like

A2
µA2

ν ;
qµAµqνA

νA2
ρ

q2
(A.6)

and so on.

It is easy to see the role of short distances in the Feynman graphs. In the one loop

graph, with four external gauge bosons, with polarization indices a, b, c, d, the graph be-

haves in the ultraviolet as:

∫

d4p

(2π)4
Tr(γa 6pγb 6pγc 6pγd 6p + γa 6pγb 6pγd 6pγc 6p + γa 6pγc 6pγc 6pγd 6p)

(p2)4
. (A.7)
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We can make the further simplification of contracting with gabgcd. Then the integrand

vanishes. However, it is necessary to introduce a regulator. In dimensional regularization,

for example, the result is:
1

(2π)d

∫

ddp
1

p4
2ε =

2

16π2
. (A.8)

So there is a finite contact term of the type suggested above. The calculation is

precisely analogous to that of the Schwinger model.

In the case of a massive field, the situation is parallel to that of the Schwinger model.

Before regularization, there appears to be a local contact term. The integrand is now

proportional to:
∫

d4p Tr
[

γa(6p + m)γb(6p + m)γc(6p + m)γd(6p + m)γa(6p + m)γb(6p + m) (A.9)

γd(6p + m)γc(6p + m) + γa(6p + m)γc(6p + m)γc 6pγd 6p
]

/(p2 − m2)4.

Contracting with gab and gcd as before, and working directly in four dimensions, the

trace in the numerator becomes 24m4 (again, there is no divergence). So one is left with a

finite, local interaction term:

L4A =
1

16π2
AµAµAνA

ν . (A.10)

This term is not gauge invariant. Introducing a regulator cancels the contact term,

leading to a gauge invariant result (the famous Euler-Heisenberg lagangian). In the case

of a massless field, there is no such cancellation, but now there is a non-local term in the

1PI effective action, whose gauge-non-invariance cancels that of the contact term, just as

in the supergravity case.
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